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GENERATION OF CRYPTOGRAPHICALLY STRONG
RANDOM NUMBERS USING MISRS

Cross-Reference to Related Applications

[0001] This is a continuation of copending application number
09/699,884 filed on October 30, 2000, which is hereby incorporated by

reference herein.

Background

[0002] Much of today’s computer based cryptography requires
cryptographically strong random and/or pseudo-random number input
(collectively referred to herein as random number input). The
cryptographically strong random number input serves as a basis for the
generation of cryptographically strong encryption keys. In some systems, a
random number will form an encryption key “as is” (i.e., the random number

will be used as an encryption key without modification). In other systems, a
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random number will be used to “seed” an encryption key generation process.
[0003] A common form of cryptography which often requires a random
number input is public key cryptography. In a form of public key
cryptography referred to as RSA (the Rivest, Shamir, and Adelman
approach), three elements are required - a public encryption key, a private
encryption key, and a modulus. The public encryption key is simply an
arbitrary constant, which is usually recommehded to be 3 or 65,537. The
private encryption key is computed as a mathematical function of two
randomly generated large prime numbers (i.e., two random number inputs)
and the public encryption key. The modulus is merely the product of the two
large prime numbers. To insure that a user can both send and receive
encrypted data, the public encryption key and the modulus are publicly
distributed over a network. The private encryption key is not distributed over
the network, and is preserved in secrecy by its owner.

[0004] To send and receive encrypted data over a network, RSA public
key cryptography requires the generation of public and private encryption
keys for each user desiring to send and/or receive encrypted data over the
network. When User A wants to send encrypted data to User B, User A
encrypts their data using User B’s public encryption key and modulus. Upon
receiving User A’s data, User B can decrypt Uéer A’s data using their private
encryption key and modulus. In other words, User B uses User B's own
private encryption key and modulus to decrypt data which User A encrypts
using User B’s public encryption key and modulus. The success of RSA

public key cryptography is based on three principles: 1) if the randomly
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generated large prime numbers are truly large and truly random, it is
extremely difficult for an attacker to factor the user’s publicly distributed
modulus, and as a result, it is extremely difficult for an attacker to determine
the identity of the two prime numbers -- a message sent to a specific user
can only be decrypted if the two prime numbers factored into the specific
user's modulus are known; 2) knowing the algorithm which is used to
generate a user's modulus (i.e, multiplication) does not assist an attacker in
factoring the user's modulus; and 3) users’ private encryption keys can really
be kept private since there is no need to transfer copies of these keys from
one user to another.

[0005] The success of RSA public key cryptography therefore depends in
part on the generation of two truly random large prime numbers. Many other
forms of cryptography also depend on true random number generation.
Unfortunately, random numbers are hard to come by in a computer, since by
design, computers are very deterministic. If cryptography systems requiring
truly random numbers are not provided with truly random numbers, it
becomes much more likely that an attacker might be able to decipher
encrypted data.

[0006] The problem of random number generation is compounded by the
fact that many cryptography systems encrypt many different data packets,
each of which, or only a small number of which, share the same random
number input. Such systems therefore require a high volume of random
number inputs, all of which have no relation to one another and are therefore

truly random.
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[0007] In addition to public key cryptography, other situations arise in
which cryptographically strong random numbers are needed. For example,
one situation is in zero knowledge proofs. A zero knowledge proof is a
situation in which one party (a person or computer program) needs to prove
to another party that they both share a secret (e.g., a password, access to a
social security number, an account number, etc.). If the second party cannot
prove to the first party that it already knows the secret, then the first party will
not want to disclose and/or discuss the secret with the second party.
Random numbers are often required as part of a zero knowledge proof.

See, for example, the discussions of zero knowledge proofs found in “Strong
Password-Only Authenticated Key Exchange” by David P. Jablon,

www . IntegritySciences.com, March 2, 1997; “Zero Knowledge Proofs of

Identity” by U. Feige, A. Fiat, and A. Shamir, Proceedings of the 19" ACM
Symposium on Theory of Computing, pp. 210-217 (1987); and “Strongbox: A
System for Self Securing Programs” by J.D. Tygar and B.S. Yee, CMU
Computer Science: 25" Anniversary Commemorative (1991); and “Multiple
non-interactive zero knowledge proofs based on a single random string” by
U. Feige, D. Lapidot, and A. Shamir, 31% Annual Symposium on Foundations
of Computer Science, Vol. 1, pp. 308-317 (October 1990). One method of
conducting zero knowledge proofs is via Simple Password-authenticated
Exponential Key Exchange (SPEKE). SPEKE is an attractive protocol for
authentications conducted between wireless hand-held devices, set top
boxes, diskless work stations, smart cards, etc.

[0008] Several solutions to the problem of true random number
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generation have been posed. A first of these solutions is used in versions of
PGP, a software-based cryptography application sold by Network Associates
of Santa Clara, California. PGP keeps a file comprising random numbers
which are produced in response to the time intervals between keystrokes
which a user makes as they input data into to the PGP program. One
disadvantage of this system is that the random number file is kept in a user's
file system. The file can therefore be read by a savvy attacker, and/or the
values in the file could be forced to values which are supplied by the
attacker. In either case, once the attacker knows the values which are
gueued to be used by the PGP program, it becomes much easier for the
attacker to decipher data which is encrypted by the PGP program. Another
disadvantage of the PGP program is that only a small amount of random
number data is sometimes available since 1) a user is usually not required to
input a lot of data into the PGP program, and few keystrokes are therefore
made, and 2) depending on the computer and the operating system which

- the user is using, the time intervals between the user’'s keystrokes might be
quantized to the point where only a few bits of random information are
generated in response to each keystroke interval (e.g., four bits of data per
keystroke interval). Furthermore, when a user makes numerous keystroke in
succession, the speed at which the user makes successive keystrokes will
often be quite uniform. An attacker's knowledge of any of the following can
therefore be used to zero in on the range of random number data available
to the PGP program: a user’s typing speed; a user’s computer type and

speed; and a user’s operating system.
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[0009] Another problem with using user keystrokes for the generation of
random number data is that some devices which need to generate random
number data might never (or rarely) receive direct user input. For example,
consider a server which runs entirely automated computer programs, and
which is accessed by an operator via a keyboard only rarely. Or consider a
disk which is directly connected to a network (e.g., a Network Attached
Storage (NAS) device). In each of these cases, nearly all accesses to the
device are initiated over a network (e.g., the Internet), and direct keyboard
input to the device is rarely received. Such devices benefit much less from
the PGP program’s methods of generating random number data.

[0010] A second method wﬁich has been posed as a solution to the
problem of true random number generation involves timing the time it takes
to access a disk. A disk access is dependent on the location of the data
being accessed, the rotational speed of the disk, and the time it takes to
move a disk’s heads. All of these factors can vary significantly from one disk
access to another, and the time it takes to access a disk is therefore “in
theory” a good source of random data. In actuality, however, the amount of
random data which can be derived from a single disk access is limited by the
resolution with which disk access times can be measured on a given system.
Quite often, this resolution is low (e.g., eight bits). Furthermore, a disk
access is relatively slow in comparison to the speed at which a computer can
execute software which has already been loaded into the computer’'s cache
and RAM memories. Computers on which a lot of files are encrypted

therefore suffer performance penalties when they must wait on random
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number input generated in response to relatively slow disk accesses. A
solution to this speed problem is the maintenance of a random number file.
This, however, leads to the same data security problem posed by the PGP
software program (i.e., since the file is stored in a user’s file system, an
attacker might be able to access the file, and/or seed the file with known
values). Yet another problem with timing disk accesses is that absent a real
need to access a disk, encryption software will have to request a disk access
for the sole purpose of timing the disk access, and not for the purpose of
retrieving substantive data from the disk. Such “dummy” accesses increase
the mechanical wear on a disk and introduce system delays which might
delay another user's legitimate access to the same disk.

[0011] A third method which has been posed as a solution to the problem
of true random number generation involves adding to a microprocessor a
circuit for amplifying and digitizing the thermal noise produced by the
microprocessor. The problem with such a circuit is that it is very hard to
verify that it is working properly (i.e., it is hard to test). Since the output of
the circuit is intended to be random, the circuit can only be tested by
acquiring significant amounts of data from the circuit, and then subjecting the
data to complex analysis to determine if the data is in fact random. Another
problem stems from the fact that implementing such a circuit as part of a
microprocessor’s hardware makes it impossible to run two microprocessors
in “lock-step”. The ability to run two microprocessors in lock-step is an
important feature, as it enables one to run the same software program on

two microprocessors and compare the state of each microprocessor after



10991268-3 -8-

execution of each instruction in the software program. If the states of the two
microprocessors differ after the execution of an instruction, one can assume
that one of the microprocessors is faulty. Since slight manufacturing
variances in two supposedly identical microprocessors can alter the thermal
noise produced by each, the states of the microprocessor’'s thermal noise
circuits will obviously differ. It is therefore impossible to run microprocessors
with thermal noise circuits in lock-step.

[0012] Other methods for generating truly random numbers tend to
generate data which is progressively more random, but generate the data at
a greater cost. For example, one researcher has reported that he connected
a digital video camera to his computer and pointed it at three lava lights. He
then took all of the bits from the digital image generated by the video camera
and put them through a hashing function to generate a string of random bits.
While the random numbers generated from this string of random bits might
be cryptographically strong, it is not practical for most computer users to
implement such a system. Radios and microphones coupled to analog-to-
digital converters have also been proposed as sources of random data.
However, these devices suffer from the same problems as digital video
cameras. They can be expensive, and they do not come standard on all
computer systems,

[0013] The ultimate source of random data comes from measuring the
arrival times of byproducts of radioactive decay. The decay can be
background decay (i.e., naturally occurring decay which occurs in the

environment around us, but at extremely small levels which require very
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sensitive detectors to measure) or decay of a radioactive source in a
measurement instrument.

[0014] Due to the shortcomings and disadvantages of the above
methods for generating random numbers, a need exists for a truly random
number generator which: 1) generates truly random numbers, 2) is testable,
3) is cost-effective, and/or 4) is very difficult for an attacker to seed with

known values and/or reset.

Summary

[0015] To fulfill some or all of the above needs, the inventor has devised
new methods and apparatus for generating cryptographically strong random
numbers (e.g., encryption keys). The methods and apparatus obtain random
numbers, and/or obtain seed values from which random numbers can be
generated, from built-in self-test (BIST) registers. More specifically, the
methods and apparatus disclosed herein utilize data maintained by one or
more multiple input shift registeré (MISRs) as a basis for generating
cryptographically strong random numbers.

[0016] The MISRs are configured for sampling data which appears on
instruction, data and address buses of a microprocessor. Since the data
which appears on these buses is dependent upon cache accesses, disk
accesses, user input (e.g., keystrokes), network traffic, and other data

operations which influence the course of instructions executed, and data
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consumed, by a microprocessor, the data maintained by such MISRs has a
high degree of randomness. The feedback associated with the MISRs
causes their data to depend on both recent and historical cache accesses,
disk accesses, keystrokes, network traffic, and so on, thus increasing the
randomness of their data. Since today’s microprocessors perform thousands
of operations a second, the random data stored in these MISRs changes at a
high rate of speed, and a large quantity of random data is generated.

[0017] If the data stored in the afore-mentioned MISRs can only be read
by an instruction of the highest privilege (e.g., an instruction which can only
be issued by a computer’s operating system), then attacks on the MISRs’
data are unlikely to be successful. The security of MISR data is further
increased if the MISRs only sample buses which run wholly within an
integrated circuit package (i.e., buses which do not present themselves at an
integrated circuit’'s output pins, contacts, etc.).

[0018] Due to the high degree of randomness and secure storage of the
MISRs’ data, encryption keys generated therefrom are cryptographically
strong.

[0019] It is also significant to note that the data stored in the MISRs is
essentially updated at the clock speed of the buses to which they are
attached, and by the time a computer has booted up, the data stored in the
MISRs has already been updated in response to thousands of variables.
Random MISR data is therefore available whenever it is needed, and is
available much quicker than random data generated in response to a yet

unexecuted disk access.
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[0020] MISRs are especially useful for generating a random number
within a device which receives little or no keyboard input (e.g., a server or a
NAS device).

[0021] Another advantage of generating random numbers in response to
MISR data is that the hardware needed to implement and service a MISR is
relatively small and cheap. Furthermore, MISRs which sample the
instruction, data and address buses of a microprocessor can also be used as
components of BIST hardware. As a result, their use for random number
generation is essentially provided at no additional cost, and their testability is
insured.

[0022] These and other important advantages and objectives of the
present invention will be further explained in, or will become apparent from,

the accompanying description, drawings and claims.

Brief Description of the Drawings

[0023] lllustrative and presently preferred embodiments of the invention
are illustrated in the drawings, in which:

[0024] FIG. 1 illustrates a method for generating random numbers;
[0025] FIG. 2 illustrates a conventional shift register;

[0026] FIG. 3 illustrates a multiple input shift register;

[0027] FIG. 4 iIIu.strates a preferred embodiment of how multiple input

shift registers such as those illustrated in FIG. 3 can be coupled to various
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buses of a microprocessor,

[0028] FIG. 5 illustrates hardware for scanning data out of two of the FIG.
3 MISRs in parallel, and in a non-destructive manner;

[0029] FIG. 6 illustrates hardware for serially scanning data out of one of
the FIG. 3 MISRs; .

[0030] FIG. 7 illustrates an integrated circuit which might house the
apparatus illustrated in FIG. 4;

[0031] FIG. 8 illustrates a process for combining multiple input shift
register outputs to produce random number data;

[0032] FIG. 9 illustrates a more detailed embodiment of the method
illustrated in FIG. 1; and

[0033] FIG. 10 illustrates an exemplary exchange of encrypted data using

a form of public key cryptography.
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Detailed Description

[0034] A method 100 of generating a random number (e.g., an encryption
key) is generally illustrated in FIG. 1. The method 100 comprises retrieving
values from a number of multiple input shift registers (MISRs) which are
coupled to a number of microprocessor buses 102, and then generating a
random number which is based on the retrieved values 104.

[0035] In order to fully understand the nature of the invention, and the
invention”s ability to generate truly random numbers, one has to have a
basic understanding of how a MISR 300 (FIG. 3) works.

[0036] A generic shift register 200 is illustrated in FIG. 2. Note that a
single external input 202 influences the state of the shift register's most
significant bit position 204, and that each remaining bit position 206-212
receives data which is shifted out of a more significant bit position of the shift
register 200. A generic shift register 200 may comprise a serial 214 and/or
parallel 216-224 output.

[0037] A MISR 300 is illustrated in FIG. 3. A MISR 300 differs from a
generic shift register 200 in that an external input IN[X] influences the state
of each of its bit positions 302-310 (where X ranges from 0 to N-1, and where
N is the number of bit positions 302-310 in the MISR 300). For example, the
MISR 300 illustrated in FIG. 3 shows that but for the most significant bit
position 302 of the MISR 300, an external input IN[X] is exclusive-ORed
(XORed) 324-330 with the output of a bit position X+1 312-318, with the

result of the XOR 324-330 being used as the input to the bit position X 314-
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320. The input for the most significant bit position 312 of the MISR 300 is
derived from the XOR 322 of an external input IN[N-1] and a feedback bit
332. The feedback bit 332 is derived from the XOR 334 of a number of bits
(e.g., 316, 320) determined by a feedback equation. The feedback equation
is preferably chosen to insure that the MISR 300 has a maximal period (i.e.,
a maximum period between the repetition of a feedback bit sequence if the
external inputs IN[X] to the MISR 300 were to remain constant). In some
MISR embodiments, feedback is also provided to other bit positions.

[0038] In a preferred embodiment of the invention, a number of MISRs
402-412 (FIG. 4) are coupled to various internal buses 414-424 of a
microprocessor 400. Take for instance the microprocessor 400 illustrated in
FIG. 4, which comprises a CPU core 426 coupled to an instruction cache
428-430 and a data cache 432-438. If each cache 428-430, 432-438 is
coupled to the CPU core 426 via an address bus 414, 440, 444, 418, 450,
424 and a data bus 416, 442, 446, 420, 448, 422, the external inputs IN[X] of
a single MISR 300 could be coupled to any or each of these buses 414-424,
440-450. Furthermore, the external inputs IN[X] of the same or different
MISRs 402-412 could be coupled to each of these buses 414-424, 440-450.
A MISR 300 could also be coupled to a bus which presents itself externally
to a microprocessor 400. However, if a bus being sampled by a MISR 300
for the purpose of subsequent key generation is externally accessible, it
might be possible for an attacker to sample this bus in an effort to determine
the value or range of values which a resultant encryption key might assume.

If the output 312-320 of a MISR 300 coupled to an externally accessible bus
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is used in generating an encryption key, it is preferable to combine the output
312-320 of the MISR 300 with other data, as will be explained below, to
make the key more cryptographically strong.

[0039] FIG. 7 shows the microprocessor of FIG. 4 mounted within an
integrated circuit 700. The integrated circuit 700 comprises a package 702,
704 which serves to house a microprocessor 400 aﬁd 1) protect it from
damage, and 2) provide larger contacts 708 for connecting the
microprocessor to other components. Note that the bus which runs between
microprocessor components 426 and 428 runs wholly within the integrated
circuit 700, while a bus which uses wires 706 would make contact with solder
bumps 708 and run externally from the microprocessor 400.

[0040] Regardless of which buses 414-422, 440-450 MISRs 300 are
coupled to, and how many MISRs 300 are used, one can appreciate that the
output 312-320 of a MISR 300 will depend on every cache access, disk
access, keystroke, and other data operation which influences the course of
instructions executed by, and data consumed by, a microprocessor 300.
Furthermore, due to the feedback function 316, 320, 334, 332 associated
with a MISR 300, the output of a MISR 300 will depend on both recent and
historical cache accesses, disk accesses, keystrokes, network traffic, and so
on. Since today's microprocessors 300 perform thousands of operations a
second, the output of a MISR 300 will change at a high rate of speed, and
with great randomness. Even if a MISR 300 is initialized to a predetermined
value upon boét of a computer in which it resides, the output 312-320 of the

MISR 300 will already have changed dramatically by the time the computer’s
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operating system has been loaded and the computer is ready to receive
input from (or generate output for) its user.

[0041] In a preferred embodiment of the invention, MISRs 402-412 are
coupled to each of the data 416, 420, 422 and address 414, 418, 424 buses
connecting a microprocessor’s CPU core 426 to the data portions of on-chip
instruction 428 and data 434, 438 caches. The MISRs 402-412 are read in
parallel by downloading the value of each into temporary registers 502, 506
which are coupled to a serial scan chain 500-508. In this manner, the MISRs
402-412 are read in a non-destructive manner (i.e, the state of each MISR
402-412 is left unchanged after a read of same). While a destructive read of
a MISR may also be performed, a destructive read can result in the clearing
a MISRs state (or can result in otherwise setting the MISR to a non-random
state). Thus, sequential destructive reads of a MISR are less preferred since
they can result in the generation of encryption keys which are not very
random (or not random at all).

[0042] Values stored in each of the temporary registers 502, 506 may be
scanned out and utilized by hardware or software to generate one or more
encryption keys.

[0043] In an alternate arrangement, a single bit of a MISR 600 is coupled
to a link 604 in a scan chain 604-608, and the value of the MISR 600 is read
in a serial fashion by stepping (e.g., clocking) data out of the MISR 600. An
advantage to such a read is that the read leaves the MISR 600 in a new
state, which state can immediately be read for the purpose of generating a

new and different encryption key or seed value. Another advantage to such
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a read is that a serially loaded scan chain (where loading refers to the
loading of one or more temporary registers 604) requires somewhat less
hardware to implement when compared to a parallel loaded scan chain 500-
508.

[0044] Other means of reading MISRs 402-412 will be known to those
skilled in the art, and the above discussion of how data might be read out of
a number of MISRs 402-412 is not intended to limit the scope of the
invention disclosed herein. For example, data could be read from a number
of MISRs 402-412 in a truly parallel fashion. However, it is believed that a
truly parallel read system would require substantially more hardware than
that required to implement a serial scan chain 500-508, 604-608 (with either
a serial 604 or parallel 502, 506Aload mechanism as shown in FIGS. 5 & 6).
Furthermore, if the MISRs 402-412 used in the instant invention are shared
by BIST hardware, a scan chain is likely to already exist, and typically, this
scan chain serves no other purpose during normal operation of a
microprocessor 400.

[0045] Although the state of a MISR 300 which is configured as
described herein changes rapidly, a problem with performing closely spaced,
successive reads of such a MISR 300 is that the successively read MISR
values will be related to some degree. The likelihood that an attacker would
be able to determine the identity of all of the related keys upon determining
the identity of one of the keys is therefore limited to the strength of the
feedback function which is used to feed the most significant bit 302 of the

MISR 300. The following post-processing algorithm(s) are therefore
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proposed.

[0046] To deter an attacker’s attempts to sample one or more of the
buses 414-424 which are sampled by a MISR 402-412, the outputs of more
than one MISR 402-412 may be combined utilizing an XOR of corresponding
or different bits, a hashing function, or some other means 800. Such a
process is illustrated in FIG. 8. Possible dependencies which might exist
between two successive (or close in time) reads of a MISR can be eliminated
by means 800 - especially if the means 800 receives input from not only
current MISR reads, but previous MISR reads (i.e., if the means 800
comprises a feedback function 802).

[0047] An advantage of generating encryption keys based on the values
of MISRs 402-412 connected to various internal microprocessor buses 414-
424 is that not only will use of the MISR data generate a cryptographically
strong encryption key, but the data also provides a means for testing the
function and interaction of internal components of a microprocessor 400
(e.g., the function and interaction of caches 428, 434, 438 and a CPU core
426). Since more and more functionality is being internalized within a
microprocessor chip 426, and it is difficult to test the operation of these
internal components, a low cost means for testing these components is
needed. MISRs 402-412 fulfill this need. Various means of using MISRs to
test the functionality of internal microprocessor components (i.e., built-in self
test methods) are shown in U.S. Patent No. 5,301,156 of Talley, and in the
article “Analysis and Proposal of Signature Circuits for LS| Testing”, K.

lwasaki, IEEE Transactions on Computer-Aided Design, Vol. 7, No. 1,
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January 1988.

[0048] In the above cited patent and journal article, MISRs are used to
verify the operation of microprocessors and other components, presumably
during.testing which is performed prior to a microprocessor’s sale to an end
user. The MISRs are then disabled during normal operation of the
microprocessor. In conformance with the methods of generating a
cryptographic key disclosed herein, these same MISRs are turned on during
the normal operation of the computer in which the MISRs reside. Turn on is
preferably at boot, with each of the MISRs being initialized to a known value.
Values may then be retrieved from the MISRs in a number of ways.

[0049] One way in which values may be retrieved is via an operating
system call. The operating system call can be a call for a read of the MISRs,
a call for a value based on the MISR readings, or a call for a cryptographic
key. Regardless of the call’s form, the MISRs are read in one of the
manners previously described. The operating system call can be issued on
behalf of an applicatioh program (e.g., Netscape® Communicator, PGP
Desktop Security, or Microsoft® Internet Explorer) which requests a
cryptographic key (or data which can be used to generate a cryptographic
key). Alternatively, the operating system call can be issued periodically or
otherwise as determined by an operating system. In the latter case, data
read from a number of MISRs, or a cryptographic key generated therefrom,
may be stored in a temporary register for subsequent use by an application
program when the application program needs a cryptographic key. [f data

read from MISRs is stored on a disk or in RAM, care must be taken to guard
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the data from attack.

[0050] Data stored in a temporary register is preferably stored in a
hardware register which is only accessible via operating system calls of the
highest privilege level.

[0051] An operating system call for a MISR read preferably comprises
the operating system’s generation of an instruction of the highest privilege
level. In this manner, MISRs will be difficult to seed and/or monitor.

[0052] While it is possible to provide an application program with direct
access to the value(s) from a number of MISRs, such access is not
recommended, as the easier it is to obtain data from a number of MISRs, the
easier it becomes for an attacker to seed and/or monitor the MISRs.

[0053] As has been alluded to previously, MISRs which are used for the
purpose of encryption key generation may also be used for BIST
functionality. In fact, it is preferred that the MISRs which are used for
generating encryption keys form part of a larger network of BIST hardware.
If so, the invention depends on little or no “encryption key specific” hardware.
Rather, the invention can be embodied in software and/or firmware, and can
rely on pre-existing BIST hardware.

[0054] The PA8500 microprocessor sold by Hewlett Packard Company of
Palo Alto is an example of a processor which already comprises BIST
hardware. Specifically, the PA8500 comprises BIST hardware which is
designed to write data to (or read data from) internal processor buses such
as those which are illustrated in FIG. 4. Through BIST writes and reads, the

functionality of the PA8500’s internal caches (as well as the PA8500’s proper
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execution of processor dependent code (PDC)) can be tested.

[0055] The BIST hardware of the PA8500 is divided into local blocks, with
each local block being assigned a “major address”. Each register within a
local block is assigned a “minor address”. In this manner, a particular BIST
register may be easily identified and addressed, or data may be easily
broadcast to all BIST local blocks. Each local block comprises a MISR,
along with a corresponding register for loading data into, or reading data
from, the MISR. A hierarchical RDR (remote diagnose register) structure is
used to shift data into particular BIST registers.

[0056] In the PA8500, MISR operations do not interrupt CPU cache
accesses, and therefore operate in a cache-coherent manner. Hence, non-
intrusive read and write access to MISR registers is possible. Although not a
requirement of the invention, such non-intrusive read and write access is
significant, in that it allows encryption keys to be obtained during normal
operation of the CPU, and therefore allows encryption keys to be obtained
more quickly.

[0057] A main BIST control register in the PA8500 provides a means for
specifying a major address of a BIST local block which is to be programmed,
as well as a means for specifying actions to be implemented (controls) and
instructions to be executed within a BIST local block. One control bit in the
main BIST control register dictates whether a local block's MISR is enabled
or disabled.

[0058] FIG. 9 illustrates a more detailed embodiment of the invention, in

which the above described BIST hardware of the PA8500 processor is used
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for encryption key generation.

[0059] In step 900, each BIST local block is assigned a major address.
In step 902, each MISR within a BIST local block is assigned a minor
address. The MISRs are preferably assigned the same minor address so
that broadcast MISR read/write operations are possible. Steps 900 and 902
are preferably performed during chip manufacture.

[0060] In step 904, one or more instructions are issued to turn on and
initialize the MISRs which will be used for encryption key generation. MISRs
may also be subjected to system self-test procedures at this time, thus
ensuring their proper functioning. Step 904 is preferably performed upon
boot of a computer system.

[0061] In step 906, a request is issued for an encryption key.
Subsequently, in step 908, a request to read the appropriate MISRs is
issued. Thereafter, the MISR readings are XORed with each other (at step
910), and with historical MISR readings, to generate an encryption key. The
encryption key is then returned (at step 912) to the application which
requested it.

[0062] Although the request 906 for an encryption key is shown in FIG. 9
to be prior to the request 908 to read MISRs, the request 908 to read MISRs
may, in an alternative embodiment of the invention, be issued first. For
example, an operating system might be configured to maintain a queue of
encryption keys which can then be provided to an application more quickly
than if a MISR has to first be accessed and read. If a queue of encryption

keys (or a queue of encryption key seeds) is kept, it is preferable that this
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queue not be maintained in an easily accessible file (e.g., a user file). In
fact, it is preferable to maintain such a queue within a hardware based
register file which is only accessible via an operating system call of the
highest privilege level.

[0063] FIG. 10 illustrates a preferred method of using encryption keys
which are generated in accordance with the invention. The preferred method
is a variation of the RSA public key encryption method. First, user B obtains
an encryption key “seed value” in accordance with the invention. The
encryption key seed value is then used to generate a pair of keys: one public
key 1004 and one private key 1014. User B then transfers his public key
1004 from his computer 1002 to user's A computer 1000 (preferably over a
network 1006 which connects the two computers). Note that the user A and
B computers may comprise any combination of personal computers,
workstations, servers, devices, server or client applications running on a
single or multiple computers, etc.

[0064] When user A desires to send a message 1020 to user B, user A
obtains their own “secret” random number 1008 and encrypts the message
1020 using a suitable encryption algorithm 1022. User A then encrypts their
secret key 1008 using another suitable encryption algorithm 1010 and user |
B’s public key 1004. The encrypted message 1024 and encrypted secret key
1012 are then transmitted to user B’s computer 1002 where 1) the secret key
1018 is decrypted using a decryption algorithm 1016 and user B’s private key
1014, and 2) the message 1028 is decrypted using a decryption algorithm

1026 and the secret key 1018. Once decoded, user B can read the
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message 1018.

[0065] While illustrative and presently preferred embodiments of the
invention have been described in detail herein, it is to be understood that the
inventive concepts may be otherwise variously embodied and employed, and
that the appended claims are intended to be construed to include such

variations, except as limited by the prior art.
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